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This paper extends the gas-kinetic theory based flux splitting method for ideal
magnetohydrodynamics (MHD) equations (K. Xu, 1999Comput. Physl53 334)
to multidimensional cases. The kinetic MHD scheme is constructed based on the
direct splitting of the macroscopic flux functions with the consideration of particle
transport. At the same time, particle “collisions” are implemented in the free trans-
port process to reduce the numerical dissipation. The high-order resolution of the
scheme is achieved through the MUSCL-type initial reconstruction and the Runge—
Kutta time-stepping method. The numerical tests include the spherical explosion,
the Kelvin—Helmholtz instability, and the Orszag—Tang MHD turbulence problems.
Numerical results validate the accuracy of the kinetic approa@h2000 Academic Press
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1. INTRODUCTION

The multidimensional ideal MHD equations are
pt+ V- (pu) =0,
1
(oUW + V- {PUU-F <p+ 582>I - BB} =0,
B: —V x (uxB) =0, (1.2)
(E)+V-[uE+p) —(uxB)xB|] =0,

wherep, p, u = (ux, Uy, Uz), andB = (B, By, B,) denote mass density, gas pressure, fluic
velocity vector, and magnetic field, respectively. The total energy density includes thern
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70 TANG AND XU

kinetic, and magnetic energies,
1
E =pe+ E(pu2 + B?), (1.2)

wherepe s the thermal energy density; = uZ + u? + uZ, andB? = Bf + B7 + BZ. For
ideal gases, the thermal energy is related to the gas pressure through the relation

p=(y—1pe (1.3)

wherey is the ratio of the specific heats. In addition to these equations, the magnetic fi
has to satisfy the divergence-free condition; ive:,B = 0.

In the past decade, various high-resolution schemes have been developed for the N\
equations. Most ofthese schemes are based on the approximate Riemann solvers|[1, 3, ¢
13,16, 21, 27], where seven- or eight-wave family eigensystems are used in the characte
decomposition. Due to the nonstrict hyperbolicity of the MHD system, considerable wc
is required for the validation of the MHD eigensystem. Recently, based on the parti
transport mechanism, Croisilig al.and Xu constructed gas-kinetic MHD solvers [6, 26].
Because of the simplicity of the kinetic flux functions, the efficiency becomes one of t
advantages in the kinetic approach. In the current paper, the accuracy of the kinetic me
will be further demonstrated in the multidimensional cases.

The accuracy and robustness of any shock-capturing scheme depend on how smal

introduction of the numerical dissipation is. There are two sources of the numerical dis
pations introduced in the MUSCL-type shock-capturing schemes. One is from the ini
reconstruction, and the other is from the underlying dynamics of the gas evolution mot
For the flux vector splitting (FVS) schemes [14, 19, 23], the splitting of the flux functio
to F = F* + F~ assumes the particle or wave-free transport mechanism, which implicit
sets the particle mean free path equal to the cell size. Therefore, the numerical viscc
coefficient in the FVS model will be proportional to the cell sixg; i.e., voym ~ AX [25].
For high-resolution methods, the dissipation is much reduced due to the reconstructio
initial data. For example, in the smooth flow region, a second-order scheme should h
theoreticallyvnum ~ (AX)2. Besides the high-order initial interpolation, the introduction
of particle collisions in the gas evolution stage is still necessary to reduce the numer
dissipation [26].

The current paper extends the gas-kinetic theory based flux splitting MHD method [:
to high-order and multidimensions. Similarly to many other schemes, a directional spilitti
method is used to update flow variables. High-order spatial resolution is obtained us
a MUSCL-type reconstruction technique, and temporal accuracy is achieved through
Runge—Kutta method. Also, in order to impose the divergence-free condition for the m:
netic fieldV - B = 0, a correction method is enforced in solving the Possion equation f
the potential, such as/?¢ + V - B = 0, to obtain the corrected magnetic fi@tthrough
B¢ = B + V¢, whereV - B¢ = 0 is satisfied. This technique is used in many MHD solvers
[4, 9, 27]. The current method has only second-order accuracy in the smooth flow regi
It may not be suitable for problems with very long time simulation involving complicate
waves.

The outline of the paper is the following. Section 2 presents a second-order kinetic Mt
solver in the two-dimensional case. Section 3 includes numerical test cases. Section 4 i
discussion and conclusion.
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2. AGAS-KINETIC FLUX SPLITTING METHOD

In this section we will extend the gas-kinetic flux splitting method in [26] to a multidi
mensional case. For the sake of simplicity, we restrict our attention to two dimensions.

Assume that the computational domain is subdivided into quadrilaterals. For a numer
cell, such asA;; in Fig. 1, the bounding surfac@sh;j consist of four boundary elements
S k=1, 2, 3,4), andng denotes its outward unit normal direction. The integration o
Eq. (1.1) over the control volumad;; gives the finite volume scheme

9 4
8t//A“U AV + 3 Fn (U(SO)IS = 0, (2.1)

k=1

where the conservative variables= [p, puy, puUy, pUz, By, By, By, E]", and the flux
function F,, (U) across a cell interface in the nornmgtdirection is defined by

punk
PUxUn, — BxBn, + cosay p.
pUyUn, — By Bp, + sinoy ps

puzunk - Bank

Fn,(U) = (2.2)

sinay (B, Uy, — By,Un,)
COSOlk(BtKUm< - Bnkutk)
BZUnk - Bnkuz

Unk(E + p*) - Bnk(unk Bnk + utk Blk + uZBZ)

Here p, is the total pressure with the valye = p + 3(B2 + BZ + B2); a is the angle

o

FIG. 1. Two-dimensional computational ce¥ ;.
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between the normal directiom, and thex-coordinate (measured in the anti-clockwise
direction). In the above equations,,, u,, By, and B, denote the components of the
velocity and the magnetic field in thg- andty-directions; i.e.,

Un, = COSaUy + SiNakUy, Uy = —SiNayUy + COSakUy,

Bn, = cosoy By + sinax By, By = —sinay By + cosayBy.

The numerical discretization of the two-dimensional ideal MHD equations (2.1) has k
come the evaluation of the local one-dimensional macroscopic flux funEtjpthrough
each boundary element. Based on the gas-kinetic theory, the flux is associated with the
cle transport across a cell interface. For the one-dimensional flow, such asiditieetion,
the normal component of the particle velocity, suclyass important in the determination
of the flux function across this cell interface. Other quantities can be considered as pas
scalars, which are transported with tielirection particle motion. Since particles are ran-
domly distributed around an average velocity, these moving particles mdirection can
be favorably described by a Maxwell-Boltzmann distribution function,

A\ Y2 2
g=7p () g (on—tn)?* (2.3)

T

whereu, is the average fluid velocity in thredirection,v, is the individual particle velocity
inthe same direction, arids the normalization factor of the distribution of random velocity,
which is related to the local temperature of the gas flow. For the MHD equations (1.1) w
U = [p, pUx, pUy, pUz, Bx, By, B,, E]T, both the gas and the magnetic field contribute tc
the total pressurg,, and the total internal energy is a combination of gas and magne
energy. Since the pressure is related to the integration of the particle distribution fu
tion g,

/_OO(Un - Un)zg dvp = 2%7 (2-4)

the value ofs in Eq. (2.3) is uniquely determined by= po/2p..

After determining, we can split the particles into two groups in tirelirection accord-
ing to v, > 0 andv, < 0. As a result, the MHD flux function through a cell interface in
the normal direction becomds, (U) = F,j;(U) + F,U) (k=1,2, 3, or 4), where the
positive and negative parts are

p 0
PUx cosay P, — By By,
pUy Sinoy ps — By By,
puZ _Ban
+ _ 1 k 0
Fr(U) = —sinok By, <Unk>i + sina By, U, <Unk>f (2.5)
cosay By, —Cosak By, Uy,
B; _Bnkuz

1
E + 2 pO _Bnk (Blk utk + BZuZ) + %pounk
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Herepo = p, — BZ . Inthe above formulations, the moment§ ). and(v}, ). are defined
by

1
(), = 5 erfe(F VAun,)

and

As aresult, the splitting flux function for the MHD equations at a cell interface, suéh as
in Fig. 1, becomes

(Frzl)i-&-l/Z,j = F (Ui j) + Fy (Uig ), (2.6)

where “f” is used to denote the above free transport model. The above MHD flux splitti
formulation goes back to the method developed by Croistllal. in the one-dimensional
case [6]. This KFVS-type MHD method is very robust, but overdiffusive, especially |
the case with coarse mesh. To reduce the numerical dissipation, Xu [26] implemente
particle collisional mechanism in the above flux transporting process. The idea is to ob
an equilibrium stat&J at the cell interface by combining the left and right moving beam
and use this state to get an equilibrium flux functigfUy, ) through the flux definition
Fr(U(S)) in Eq. (2.2). The equilibrium state at the cell interface, suctBascan be
constructed as

T
(Ul’i)i+l/27j = [pa Punl, put17 IOUZ’ Bnla Blla BZ» E]iJrl/Z,j

= Uy (Ui)) + Uy (Uig)),

where
0 1Y
0 0
0 pUt,
+ 0 1 Uz 0
Up,(U) = 0 (va,)s + Bn, (Vny ) @.7)

0 By,

1 ° B.

qunl E— %puﬁl

Then, the final flux function across the cell interfa&g&ds given by

(Fnl)i+1/2,j =@1- ”)(Fri)wl/z,j + n(Fr];l)H»l/z,j’ (2.8)

wheren is an adaptive parameter between [0, 1], which takes a constant 0.7 in all test c:
of the current paper. Physically,should be an adaptive parameter related to the real flo
situation. For example, in the strong shock region, it must have a large value to accoun
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the nonequilibrium property. The design of an optimgnelated to the flow distribution is
still an open question.
Now the semi-discrete finite difference version of the gas-kinetic scheme (2.1) becor

du. j(t) 1
(I:ijt = _E((Fnl)wl/z,J 1S+ (Fra)i a1

+(Fn2)i,j+l/2|82|+ (F“4>i.j—1/2|31|)’ (2.9)

whereF,, denotes the fluxes across each boundary element in the normal direction an
definedin (2.8). Here\V is the area of the quadrilateraj; . The above scheme is only first-
order accurate in space. To improve the accuracy of the scheme, the initial reconstruc
technigue must be applied to interpolate the cell averaged variables; j,eFor example,

a linear function,

Ui.j (%, y) = Ui j + Ui (X = %) + (Uyi (Y = i),
for (X, y) € [Xi—y2j. Xi+v2i] x [Yij-12. Yi.j+1/2), (2.10)

can be constructed to approximate the cell averaged varidbleat the beginning of each
time step, whergU,); ; and(Uy); ; are the approximate slopes in tkeandy-directions
inside the control volumé\;;. To avoid oscillations in the reconstructed data, the slope c
U, such as in the-direction, is obtained through the van Leer limiter,

Is*lls ;|

Ux)i,j = (sgn§™) +sgns ) ——=—,

(2.11)

where sgn is the sign function, and
sfi = (Uin+l,j - Uir,]j)/(XiJrl,J' —Xi.j), ﬁ?j = (Uir,]j - Uin—l,j)/(xi,j — Xi—1,j)- (2.12)

Similarly, (Uy); j can be constructed. In the current paper, the interpolation is impos
on the conservative variables directly, which is different from those schemes based on
characteristic waves decomposition [2].

Based on the above limited linear reconstruction (2.10), a high spatial resolution kine
MHD solver becomes

dUi,j(t)
dt

1 ~ ~ ~ ~
= _N((Fnl)i-&-l/lj (Ui+1/2,j’ UI+1/2])|S.|.| + (Fn3)i_1/2,j (Ui—l/Z,j ’ Ui—1/2,j)|%|
+ (Fnz)i,j+l/2<0i,j+l/2, Ui jr12)1S] + (Fn4)i,j_1/2(0i,j—1/2, Uij—12)ISil). (2.13)

where the flow variables next to the cell interface are

Uisr2j = Uij(Xisvzj Yi+vzi). Uisyz) = Uigsj (Xi+y2s Yityzj)s

andU; | 11,2 andU; 12 are defined similarly.
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To improve the temporal accuracy, a second-order TVD Runge—Kutta scheme is use
solve Eq. (2.13) [18]. Denoting the right-hand side of (2.13). d4), a second-order TVD
Runge—Kutta scheme updatdghrough the following two stages:

U® =U"+ AtLUM),

untt = %(un +UD 4+ AtL(UD)).

3. NUMERICAL RESULTS

In this section, the van Leer limiter is used for the initial reconstruction of the conservati
variables, and the coefficientin the flux function (2.8) is taking a constant 0.7.

3.1. Spherical Explosion [27]

The computational domain of the explosion case j{®] x [0, 100]. There is a high
pressure region around the center with a radigs10. The initial density over the whole do-
main is 1, and the pressures inside and outside the central region are 100 and 1, respec
Three different values of the initial magnetic figBy, By, B,), (0, 0, 0),(0, 5//x, 0), and
(0,50/+/7, 0), are considered. In all three casgss equal to 20 and a uniform mesh with
100 x 100 grid points is used.

When the problem is solved with zero initial magnetic field, the scheme goes back
the kinetic method for the compressible Euler equations. In this case, the fluid partic
propagate symmetrically in the radial direction. The numerical solutians-&8 are shown
in Fig. 2. When the strength of the initial magnetic field is increaseByte- 5//7, the
shock front becomes slightly elongated in the direction of the magnetic field. The simulat
results at timet = 3 are given in Fig. 3. If we continue to increase the strength of th
magnetic field, due to the magnetic pressure, the fluid motion in the direction perpendic
to the magnetic field line will be severely suppressed. For example Byith 50/,/7, the
explosion becomes highly anisotropic, as shown in Fig. 4. In comparison with the result
[27], the contours given by the kinetic scheme have fewer wiggles and smaller oscillati
in all three cases.

3.2. Orszag—Tang MHD Turbulence [15]

This interesting problem was introduced by Orszag and Tang as a simple mode
study MHD turbulence [15]. Similar problems were entensively studied by Dahlburg a
Picone for the evolution of compressible vortex systems [7, 12]. Because of its complica
interaction between different waves generated as the vortex system evolving, the Ors:
Tang test has been used by many authors as a standard model to validate different num
codes [9, 27]. The initial data for the current study are

p(X.y.0) = y% Uy =—sin(y), uy = sin(x),
p(Xs Yy, O) =Y, BX = —Sin()/), By = Sin(ZX),

where y = 5/3. The average magnitude of the velocity and the magnetic field a
both about 1, and the initial average Mach num&t = po|uo|/(ypo) becomes 1 as
well.
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00 02 0.4 ae (X 10

FIG. 2. The solution of a spherical explosion case with initial magnetic figld= 0. The output time is at
t = 3.0 and 100« 100 grid points are used in the calculation. (a) Density; (b) gas pressure; (c) magnetic press
(d) density alongy = 0.5.

The computation takes place on a domain of20] x [0, 2] with a uniform mesh of
192x 192 grid points. The same cell size is used in the papers by Jiang and Wu [9]
Zacharyet al.[27]. Periodic boundary conditions are imposed in botlandy-directions.
Figures 5-8 show the numerical results from the current kinetic scheme at the output til
t = 0.5, 2, 3, and 8, where 20 contours are plotted in the density, gas pressure, magn
pressure, and kinetic energy distributions. Figure 9 is the pressure distribution along a lin
y = 0.625t, where the solid line is obtained with a refined mesh of 28B4 grid points.
The perfect fitting of both curves in Fig. 9 illustrates that the kinetic scheme does give res
convergent with those of the mesh refinement. The detailed pressure data with1922
grid points are listed in Table | for future reference. Figures 10-12 show the time evoluti
of the global magnetic energy, kinetic energy, and thermal energy. Itis interesting to obse
that the kinetic, magnetic, and thermal energies all approximate to some constants at
times in the MHD system, even though they are not precisely settling to the equal-partit
distribution as commonly used in astrophysics. In comparison with the results from [9] &
[27], the current results are closer to Jiang and Wu’s numerical solutions, especially
pressure distribution in Fig. 9.
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TABLE |
Pressure Distribution of the Orszag—Tang MHD Turbulence Simulation at Timet = 3
along a Cut aty = 0.625r

X p X p X p X p X p

0.04960 2.537 0.7771 2.946 1.769 0.7065 3.522 3.105 4.845 0.78C
0.1157 2.655 0.8433 2.840 1.835 0.9467 3.588 3.136 5.010  0.83C
0.1819 2.772 0.9094 2.727 1.935 1.146 3.654 3.096 5109  0.752
0.2811 2.692 0.9755 2.650 2.133 1.307 3.786 2.853 5175  0.563

0.3472 2.647 1.108 2.602 2.398 1.363 3.919 2.637 5.241  0.526
0.4134 3.238 1.339 2.640 2.662 1.388 4.018 2.599 5.473  0.543
0.4795 2.776 1.472 2.652 2.861 1.430 4.150 2.642 5.704  0.648
0.5126 2.679 1.505 2.616 2.993 1.554 4.282 2.749 6.002  0.907
0.5456 2.726 1571 1.958 3.059 1.696 4.316 2.386 6.068 1.037
0.6118 2.979 1.637 0.5440 3.191 2.247 4.349 1.002 6.134 1.526
0.6449 3.034 1.670 0.5289 3.323 2.754 4.382 0.6685 6.201 2.324
0.7110 3.007 1.703 0.5629 3.456 3.023 4.580 0.7003 6.267 2.59C

FIG. 3. The solution of a spherical explosion case with an initial fiB|d= 5/./7. The output time is at
t = 3.0. (a) Density; (b) gas pressure; (c) magnetic pressure; (d) kinetic energy.
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(c) (d)

FIG. 4. The solution of a spherical explosion case with an initial fiBjd= 50/./7. The output time is at
t = 1.05. (a) Density; (b) gas pressure; (c) magnetic pressure; (d) kinetic energy.

3.3. Kelvin—Helmholtz Instability [24]

The Kelvin—Helmholtz instability arises when two superposed fluid flows have a relati
velocity. It can be considered an important mechanism for momentum transfer at the Eau
magnetopause boundary, which separates the solar wind from the Earth’s magnetosp
Similarly to the calculations in [9], we consider both periodic and convective models, whi
are defined in terms of the-direction boundary conditions.

The initial data of the periodic and convective models are givep by1, ux = (Up/2)
tanh(y/a), B, = 0, andp = 0.5, wherea denotes the width of the velocity shear layer with
the value of 1ug = 2, andy = 2. Initially, a small perturbation for the velocity field is
imposed,

by =

—psinrx/0)/(1+y?), ifxe -4, 4]
0, otherwise

whereli, = 0.008 and. = 5 in the above perturbation. The computational domain used
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FIG. 5. The Orszag-Tang MHD turbulence problem with a uniform mesh ofx982 grid points. The
output time ist = 0.5: There are 20 contours for density, pressure, magnetic pressure, and kinetic ene
(a) Density; (b) gas pressure; (c) magnetic pressure; (d) kinetic energy.

[-L/2,L/2] x [-H, H],whereL = » andH = 10 forthe periodic case, ahd= 11\ and

H = 20 for the convective case. In both cases, the outflow boundary conditions are app
at the top and bottom boundaries. In txdirection, the periodic boundary condition is used
for the periodic model and the outflow boundary condition is used for the convective cz
With the consideration of initial velocity distribution, Jiang and Wu used an adaptive me
in their calculations, where the smallest cell size useflys= 0.1275 for the convective
model, andAy = 0.103448 and @507786 for the two periodic cases. In our calculations
a uniform mesh withAy = 0.1 is used in all cases. The use of a fine mesh to resol
the initial velocity field is necessary in the current example. Otherwise, if a large ¢
size around; = 0 is used, the initial velocity distribution will be erroneously representec
Figures 13-15 show contours of the density and pressure obtained by the current me
at different output times for the periodic and convective cases. Figure 16 presents the
evolution of the total transverse kinetic ene@&pui dx dyfor the periodic and convective
systems. Our numerical results are very close to those obtained using fifth-order WE
methods [9].
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FIG. 6. The Orszag—Tang MHD turbulence problem at output tinze 2. (a) Density; (b) gas pressure;
(c) magnetic pressure; (d) kinetic energy.

To further demonstrate the accuracy of the kinetic scheme, we have calculated the Kel:
Helmholtz instability with different mesh sizes. Table Il shows a comparison between 1
kinetic schemes with = 0.7 andy = 1.0 for the above periodic model with a uniform grid
in bothx- andy-directions over the computational domain%l, 57”] x [—10, 10]. For each
run, we list the maximum transverse kinetic energy attained and the time when it occt
In comparison with the results presented in Table V of [9], the kinetic scheme could g

TABLE Il
The Maximum Total Transverse Kinetic Energy Ey of the Periodic
Kelvin—Helmholtz Instability Case on a Mesh Refinement Study

BGK scheme# = 0.7) KFVS schemer( = 1)

Grid Ey Time Ey Time
50 x 100 3.1288 88.2061 2.3648 93.3091
100x 200 3.8040 78.7819 3.7261 79.8388

200x 400 3.8275 77.4621 3.8292 77.5723
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FIG. 7. The Orszag-Tang MHD turbulence problem at output tinze 3. (a) Density; (b) gas pressure;
(c) magnetic pressure; (d) kinetic energy.

a higher converged transverse kinetic enelfgyi.e., Ex = 3.827 instead oy = 3.703

of fifth-order ENO method [9], and our results are much better than those obtained fr
other second-order methods [9]. Also, the difference in numerical dissipation between
schemes with collisional = 0.7 and free transpont = 1.0 models can be clearly observed,
especially in the coarse mesh case withhb000 grid points. Fortunately, for both kinetic

models the numerical results converge with the mesh refinements.

4. DISCUSSION AND CONCLUSION

In this paper we have extended the gas-kinetic theory based flux splitting method [2€
the multidimensional MHD calculations. The numerical flux function is constructed wit
the consideration of particle transport across the cell interfaces and particle “collisions”
implemented in the transport process to reduce the numerical dissipation. The paramet
which determines the weights between the free transport and equilibrium fluxes in Eq. (2
takes a constant value in the current study. Although we have restricted our attention tc
two-dimensional case in the current paper, the extension of the current method to tl
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order spa

0. Itis possible

-free conditidh

to specifically design an update procedure for the magnetic field to satisfy the diverger

stepping method. The current scheme has been succes
free condition automatically. However, with the consideration of the errors involved in tl

Kutta time
applied to the spherical explosion, Kelvin—Helmholtz instability, and Orszag—Tang MH

turbulence test cases. In the near future, we are going to apply the 3D kinetic method tc
study of the interaction of the solar wind with a magnetized planet [13]. Finally, we gi\

several remarks about the current MHD solver.

(1) The initial reconstruction can be applied to the conservative or primitive variable

Due to the different amounts of dissipation introduced in the above approaches, the re:
of the MHD system depend more sensitively on the limiters and the variables used than

results of the Euler equations, especially in the cases with strong magnetic field.
(2) Similarly to any other MHD solvers, to obtain accurate and stable solutions we he

FIG. 8. The Orszag—Tang MHD turbulence problem at output tinze 8. (a) Density; (b) gas pressure;

(c) magnetic pressure; (d) kinetic energy.
resolution has been obtained in the current gas-kinetic approach with the implementa

of a MUSCL-type interpolation technique, and the temporal resolution is improved by t

dimensions using the directional splitting method is straightforward. Second

used a correction method to enforce the divergence

use of the Runge
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FIG. 9. The pressure distribution along the lige= 0.6257 for the Orszag—Tang MHD turbulence problem
at output timet = 3, where thet represents the result with 192192 grid points calculation, and the solid line
is obtained with a fine mesh of 384384 grid points. The data from 192192 grid points calculation are listed
in Table | for future references.
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FIG. 10. The time evolution of global kinetic energy for the Orszag—Tang MHD turbulence problem. Tt
calculation has been done up to tilne: 100.0 with 192x 192 grid points.
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FIG. 12. The time evolution of global thermal energy for the Orszag—Tang MHD turbulence problem.
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(@) (b)

FIG. 13. The Kelvin—Helmholtz instability in the periodic case. The output tinteds144. A uniform mesh
with 200 x 200 grid points is used and 20 contours are plotted. (a) Density; (b) pressure.

20 .

10 E
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FIG.14. The Kelvin—Helmholtz instability in the convective case at output tiree120. A uniform mesh with
528 x 400 grid points is used and 20 contours are plotted. The current calculation is on the whole computati
domain of -L/2, L/2] x [—H, H] instead of the half domain{L /2, L/2] x [0, H] used in Jiang and Wu’s
paper [9]. (a) Density; (b) pressure.
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FIG. 15. The Kelvin—Helmholtz instability in the convective case at output time 145. (a) Density;
(b) pressure.
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FIG. 16. The time evolution of the total transverse kinetic energy(goﬁpuidx dy) for the Kelvin—
Helmholtz instability case. The solid and dashed curves represent the results of the convective and per
cases, respectively.
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process of reconstruction, directional splitting, and the flux approximation, the assessr
of the real improvement in the numerical solutions from the automatical satisfaction
divergence-free condition will be difficult. But it is still interesting to develop such a MHL
solver.

(3) Because the kinetic method avoids the complicated wave decomposition procec
implemented in most approximate Riemann solvers, the kinetic method is very efficien
comparison with other MHD solvers. As shown in this paper, the accuracy of the kine
scheme is comparable to that of other high-resolution methods. Also, no entropy fi
needed to obtain a physically realizable solution in the gas-kinetic approach. At the €
it should be emphasized that the current method has only second-order accuracy. Hc
extend the kinetic scheme to a higher order one, which is required in turbulence simulat
is still an open question.
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