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This paper extends the gas-kinetic theory based flux splitting method for ideal
magnetohydrodynamics (MHD) equations (K. Xu, 1999,J. Comput. Phys.153, 334)
to multidimensional cases. The kinetic MHD scheme is constructed based on the
direct splitting of the macroscopic flux functions with the consideration of particle
transport. At the same time, particle “collisions” are implemented in the free trans-
port process to reduce the numerical dissipation. The high-order resolution of the
scheme is achieved through the MUSCL-type initial reconstruction and the Runge–
Kutta time-stepping method. The numerical tests include the spherical explosion,
the Kelvin–Helmholtz instability, and the Orszag–Tang MHD turbulence problems.
Numerical results validate the accuracy of the kinetic approach.c© 2000 Academic Press
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1. INTRODUCTION

The multidimensional ideal MHD equations are

ρt +∇ · (ρu) = 0,

(ρu)t +∇ ·
[
ρuu+

(
p+ 1

2
B2

)
I − BB

]
= 0,

(1.1)Bt −∇ × (u× B) = 0,

(E)t +∇ ·
[
u(E + p)− (u× B)× B

] = 0,

whereρ, p, u = (ux, uy, uz), andB = (Bx, By, Bz) denote mass density, gas pressure, fluid
velocity vector, and magnetic field, respectively. The total energy density includes thermal,
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kinetic, and magnetic energies,

E = ρe+ 1

2
(ρu2+ B2), (1.2)

whereρe is the thermal energy density,u2 = u2
x + u2

y + u2
z, andB2 = B2

x + B2
y + B2

z . For
ideal gases, the thermal energy is related to the gas pressure through the relation

p = (γ − 1)ρe, (1.3)

whereγ is the ratio of the specific heats. In addition to these equations, the magnetic field
has to satisfy the divergence-free condition; i.e.,∇ · B = 0.

In the past decade, various high-resolution schemes have been developed for the MHD
equations. Most of these schemes are based on the approximate Riemann solvers [1, 3, 5, 8, 9,
13, 16, 21, 27], where seven- or eight-wave family eigensystems are used in the characteristic
decomposition. Due to the nonstrict hyperbolicity of the MHD system, considerable work
is required for the validation of the MHD eigensystem. Recently, based on the particle
transport mechanism, Croisilleet al.and Xu constructed gas-kinetic MHD solvers [6, 26].
Because of the simplicity of the kinetic flux functions, the efficiency becomes one of the
advantages in the kinetic approach. In the current paper, the accuracy of the kinetic method
will be further demonstrated in the multidimensional cases.

The accuracy and robustness of any shock-capturing scheme depend on how smart the
introduction of the numerical dissipation is. There are two sources of the numerical dissi-
pations introduced in the MUSCL-type shock-capturing schemes. One is from the initial
reconstruction, and the other is from the underlying dynamics of the gas evolution model.
For the flux vector splitting (FVS) schemes [14, 19, 23], the splitting of the flux function
to F = F+ + F− assumes the particle or wave-free transport mechanism, which implicitly
sets the particle mean free path equal to the cell size. Therefore, the numerical viscosity
coefficient in the FVS model will be proportional to the cell size1x; i.e.,νnum∼ 1x [25].
For high-resolution methods, the dissipation is much reduced due to the reconstruction of
initial data. For example, in the smooth flow region, a second-order scheme should have
theoreticallyνnum∼ (1x)2. Besides the high-order initial interpolation, the introduction
of particle collisions in the gas evolution stage is still necessary to reduce the numerical
dissipation [26].

The current paper extends the gas-kinetic theory based flux splitting MHD method [26]
to high-order and multidimensions. Similarly to many other schemes, a directional splitting
method is used to update flow variables. High-order spatial resolution is obtained using
a MUSCL-type reconstruction technique, and temporal accuracy is achieved through the
Runge–Kutta method. Also, in order to impose the divergence-free condition for the mag-
netic field∇ · B = 0, a correction method is enforced in solving the Possion equation for
the potentialφ, such as∇2φ +∇ · B = 0, to obtain the corrected magnetic fieldBc through
Bc = B+∇φ, where∇ · Bc = 0 is satisfied. This technique is used in many MHD solvers
[4, 9, 27]. The current method has only second-order accuracy in the smooth flow region.
It may not be suitable for problems with very long time simulation involving complicated
waves.

The outline of the paper is the following. Section 2 presents a second-order kinetic MHD
solver in the two-dimensional case. Section 3 includes numerical test cases. Section 4 is the
discussion and conclusion.
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2. A GAS-KINETIC FLUX SPLITTING METHOD

In this section we will extend the gas-kinetic flux splitting method in [26] to a multidi-
mensional case. For the sake of simplicity, we restrict our attention to two dimensions.

Assume that the computational domain is subdivided into quadrilaterals. For a numerical
cell, such asAi j in Fig. 1, the bounding surfaces∂Ai j consist of four boundary elements
Sk (k = 1, 2, 3, 4), andnk denotes its outward unit normal direction. The integration of
Eq. (1.1) over the control volumeAi j gives the finite volume scheme

∂

∂t

∫ ∫
Ai j

U dV +
4∑

k=1

Fnk(U (Sk))|Sk| = 0, (2.1)

where the conservative variablesU = [ρ, ρux, ρuy, ρuz, Bx, By, Bz, E]T , and the flux
function Fnk(U ) across a cell interface in the normalnk-direction is defined by

Fnk(U ) =



ρunk

ρuxunk − Bx Bnk + cosαk p∗
ρuyunk − By Bnk + sinαk p∗

ρuzunk − BzBnk

sinαk
(
Bnkutk − Btkunk

)
cosαk

(
Btkunk − Bnkutk

)
Bzunk − Bnkuz

unk(E + p∗)− Bnk

(
unk Bnk + utk Btk + uzBz

)


. (2.2)

Here p∗ is the total pressure with the valuep∗ = p+ 1
2(B

2
nk
+ B2

tk
+ B2

z); αk is the angle

FIG. 1. Two-dimensional computational cellAi, j .
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between the normal directionnk and thex-coordinate (measured in the anti-clockwise
direction). In the above equations,unk , utk , Bnk , and Btk denote the components of the
velocity and the magnetic field in thenk- andtk-directions; i.e.,

unk = cosαkux + sinαkuy, utk = −sinαkux + cosαkuy,

Bnk = cosαk Bx + sinαk By, Btk = −sinαk Bx + cosαk By.

The numerical discretization of the two-dimensional ideal MHD equations (2.1) has be-
come the evaluation of the local one-dimensional macroscopic flux functionFnk through
each boundary element. Based on the gas-kinetic theory, the flux is associated with the parti-
cle transport across a cell interface. For the one-dimensional flow, such as in then-direction,
the normal component of the particle velocity, such asvn, is important in the determination
of the flux function across this cell interface. Other quantities can be considered as passive
scalars, which are transported with then-direction particle motion. Since particles are ran-
domly distributed around an average velocity, these moving particles in then-direction can
be favorably described by a Maxwell–Boltzmann distribution function,

g = ρ
(
λ

π

)1/2

e−λ(vn−un)
2
, (2.3)

whereun is the average fluid velocity in then-direction,vn is the individual particle velocity
in the same direction, andλ is the normalization factor of the distribution of random velocity,
which is related to the local temperature of the gas flow. For the MHD equations (1.1) with
U = [ρ, ρux, ρuy, ρuz, Bx, By, Bz, E]T , both the gas and the magnetic field contribute to
the total pressurep∗, and the total internal energy is a combination of gas and magnetic
energy. Since the pressure is related to the integration of the particle distribution func-
tion g,

∫ ∞
−∞
(vn − un)

2g dvn = ρ

2λ
, (2.4)

the value ofλ in Eq. (2.3) is uniquely determined byλ = ρ/2p∗.
After determiningλ, we can split the particles into two groups in then-direction accord-

ing to vn > 0 andvn < 0. As a result, the MHD flux function through a cell interface in
the normal direction becomesFnk(U ) = F+nk

(U )+ F−nk
(U ) (k = 1, 2, 3, or 4), where the

positive and negative parts are

F±nk
(U ) =



ρ

ρux

ρuy

ρuz

−sinαk Btk

cosαk Btk

Bz

E + 1
2 p0


〈
v1

nk

〉
± +



0
cosαk p∗ − Bx Bnk

sinαk p∗ − By Bnk

−BzBnk

sinαk Bnkutk

−cosαk Bnkutk

−Bnkuz

−Bnk

(
Btkutk + Bzuz

)+ 1
2 p0unk


〈
v0

nk

〉
±. (2.5)
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Herep0 = p∗ − B2
nk

. In the above formulations, the moments〈v0
nk
〉± and〈v1

nk
〉± are defined

by

〈
v0

nk

〉
± =

1

2
erfc
(∓√λunk

)
and

〈
v1

nk

〉
± = unk

〈
v0

nk

〉
± ±

1

2
√
λπ

e−λu2
nk .

As a result, the splitting flux function for the MHD equations at a cell interface, such asS1

in Fig. 1, becomes (
F f

n1

)
i+1/2, j = F+n1

(Ui, j )+ F−n1
(Ui+1, j ), (2.6)

where “f” is used to denote the above free transport model. The above MHD flux splitting
formulation goes back to the method developed by Croisilleet al. in the one-dimensional
case [6]. This KFVS-type MHD method is very robust, but overdiffusive, especially in
the case with coarse mesh. To reduce the numerical dissipation, Xu [26] implemented a
particle collisional mechanism in the above flux transporting process. The idea is to obtain
an equilibrium stateUe

nk
at the cell interface by combining the left and right moving beams

and use this state to get an equilibrium flux functionFe
nk
(Ue

nk
) through the flux definition

Fnk(U (Sk)) in Eq. (2.2). The equilibrium state at the cell interface, such asS1, can be
constructed as(

Ue
n1

)
i+1/2, j =

[
ρ, ρun1, ρut1, ρuz, Bn1, Bt1, Bz, E

]T
i+1/2, j

= U+n1
(Ui, j )+U−n1

(Ui+1, j ),

where

U±n1
(U ) =



0
ρ

0
0
0
0
0

1
2ρun1


〈
v1

n1

〉
± +



ρ

0
ρut1

ρuz

Bn1

Bt1

Bz

E − 1
2ρu2

n1


〈
v0

n1

〉
±. (2.7)

Then, the final flux function across the cell interfaceS1 is given by(
Fn1

)
i+1/2, j = (1− η)

(
Fe

n1

)
i+1/2, j + η

(
F f

n1

)
i+1/2, j , (2.8)

whereη is an adaptive parameter between [0, 1], which takes a constant 0.7 in all test cases
of the current paper. Physically,η should be an adaptive parameter related to the real flow
situation. For example, in the strong shock region, it must have a large value to account for
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the nonequilibrium property. The design of an optimumη related to the flow distribution is
still an open question.

Now the semi-discrete finite difference version of the gas-kinetic scheme (2.1) becomes

dUi, j (t)

dt
= − 1

1V

((
Fn1

)
i+1/2, j |S1| +

(
Fn3

)
i−1/2, j |S3|

+ (Fn2

)
i, j+1/2|S2| +

(
Fn4

)
i, j−1/2|S4|

)
, (2.9)

whereFnk denotes the fluxes across each boundary element in the normal direction and is
defined in (2.8). Here,1V is the area of the quadrilateralAi j . The above scheme is only first-
order accurate in space. To improve the accuracy of the scheme, the initial reconstruction
technique must be applied to interpolate the cell averaged variables, i.e.,Ui, j . For example,
a linear function,

Ūi, j (x, y) = Ui, j + (Ux)i, j (x − xi, j )+ (Uy)i, j (y− yi, j ),

for (x, y) ∈ [xi−1/2, j , xi+1/2, j
]× [yi, j−1/2, yi, j+1/2

]
, (2.10)

can be constructed to approximate the cell averaged variablesUi, j at the beginning of each
time step, where(Ux)i, j and(Uy)i, j are the approximate slopes in thex- andy-directions
inside the control volumeAi j . To avoid oscillations in the reconstructed data, the slope of
U , such as in thex-direction, is obtained through the van Leer limiter,

(Ux)i, j = (sgn(s+i, j )+ sgn(s−i, j ))
|s+i, j ||s−i, j |
|s+i, j | + |s−i, j |

, (2.11)

where sgn is the sign function, and

s+i, j =
(
Un

i+1, j −Un
i, j

)/
(xi+1, j − xi, j ), s−i, j =

(
Un

i, j −Un
i−1, j

)/
(xi, j − xi−1, j ). (2.12)

Similarly, (Uy)i, j can be constructed. In the current paper, the interpolation is imposed
on the conservative variables directly, which is different from those schemes based on the
characteristic waves decomposition [2].

Based on the above limited linear reconstruction (2.10), a high spatial resolution kinetic
MHD solver becomes

dUi, j (t)

dt

= − 1

1V

((
Fn1

)
i+1/2, j

(
Ũi+1/2, j , Ûi+1/2, j

)|S1| +
(
Fn3

)
i−1/2, j

(
Ũi−1/2, j , Ûi−1/2, j

)|S3|

+ (Fn2

)
i, j+1/2

(
Ũi, j+1/2, Ûi, j+1/2

)|S2| +
(
Fn4

)
i, j−1/2

(
Ũi, j−1/2, Ûi, j−1/2

)|S4|
)
, (2.13)

where the flow variables next to the cell interface are

Ũi+1/2, j = Ūi, j
(
xi+1/2, j , yi+1/2, j

)
, Ûi+1/2, j = Ūi+1, j

(
xi+1/2, j , yi+1/2, j

)
,

andŨi, j+1/2 andÛi, j+1/2 are defined similarly.
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To improve the temporal accuracy, a second-order TVD Runge–Kutta scheme is used to
solve Eq. (2.13) [18]. Denoting the right-hand side of (2.13) asL(U ), a second-order TVD
Runge–Kutta scheme updatesU through the following two stages:

U (1) = Un +1t L(Un),

Un+1 = 1

2

(
Un +U (1) +1t L

(
U (1)

))
.

3. NUMERICAL RESULTS

In this section, the van Leer limiter is used for the initial reconstruction of the conservative
variables, and the coefficientη in the flux function (2.8) is taking a constant 0.7.

3.1. Spherical Explosion [27]

The computational domain of the explosion case is [0, 100]× [0, 100]. There is a high
pressure region around the center with a radiusr = 10. The initial density over the whole do-
main is 1, and the pressures inside and outside the central region are 100 and 1, respectively.
Three different values of the initial magnetic field(Bx, By, Bz), (0, 0, 0),(0, 5/

√
π, 0), and

(0, 50/
√
π, 0), are considered. In all three cases,γ is equal to 2.0 and a uniform mesh with

100× 100 grid points is used.
When the problem is solved with zero initial magnetic field, the scheme goes back to

the kinetic method for the compressible Euler equations. In this case, the fluid particles
propagate symmetrically in the radial direction. The numerical solutions att = 3 are shown
in Fig. 2. When the strength of the initial magnetic field is increased toBy = 5/

√
π , the

shock front becomes slightly elongated in the direction of the magnetic field. The simulation
results at timet = 3 are given in Fig. 3. If we continue to increase the strength of the
magnetic field, due to the magnetic pressure, the fluid motion in the direction perpendicular
to the magnetic field line will be severely suppressed. For example, withBy = 50/

√
π , the

explosion becomes highly anisotropic, as shown in Fig. 4. In comparison with the results in
[27], the contours given by the kinetic scheme have fewer wiggles and smaller oscillations
in all three cases.

3.2. Orszag–Tang MHD Turbulence [15]

This interesting problem was introduced by Orszag and Tang as a simple model to
study MHD turbulence [15]. Similar problems were entensively studied by Dahlburg and
Picone for the evolution of compressible vortex systems [7, 12]. Because of its complicated
interaction between different waves generated as the vortex system evolving, the Orszag–
Tang test has been used by many authors as a standard model to validate different numerical
codes [9, 27]. The initial data for the current study are

ρ(x, y, 0) = γ 2, ux = −sin(y), uy = sin(x),

p(x, y, 0) = γ, Bx = −sin(y), By = sin(2x),

where γ = 5/3. The average magnitude of the velocity and the magnetic field are
both about 1, and the initial average Mach numberM2 = ρ0|u0|/(γ p0) becomes 1 as
well.
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FIG. 2. The solution of a spherical explosion case with initial magnetic fieldBy = 0. The output time is at
t = 3.0 and 100× 100 grid points are used in the calculation. (a) Density; (b) gas pressure; (c) magnetic pressure;
(d) density alongy = 0.5.

The computation takes place on a domain of [0, 2π ] × [0, 2π ] with a uniform mesh of
192× 192 grid points. The same cell size is used in the papers by Jiang and Wu [9] and
Zacharyet al. [27]. Periodic boundary conditions are imposed in bothx- andy-directions.
Figures 5–8 show the numerical results from the current kinetic scheme at the output times
t = 0.5, 2, 3, and 8, where 20 contours are plotted in the density, gas pressure, magnetic
pressure, and kinetic energy distributions. Figure 9 is the pressure distribution along a line at
y = 0.625π , where the solid line is obtained with a refined mesh of 384× 384 grid points.
The perfect fitting of both curves in Fig. 9 illustrates that the kinetic scheme does give results
convergent with those of the mesh refinement. The detailed pressure data with 192× 192
grid points are listed in Table I for future reference. Figures 10–12 show the time evolution
of the global magnetic energy, kinetic energy, and thermal energy. It is interesting to observe
that the kinetic, magnetic, and thermal energies all approximate to some constants at later
times in the MHD system, even though they are not precisely settling to the equal-partition
distribution as commonly used in astrophysics. In comparison with the results from [9] and
[27], the current results are closer to Jiang and Wu’s numerical solutions, especially the
pressure distribution in Fig. 9.
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TABLE I

Pressure Distribution of the Orszag–Tang MHD Turbulence Simulation at Timet = 3

along a Cut aty = 0.625π

x p x p x p x p x p

0.04960 2.537 0.7771 2.946 1.769 0.7065 3.522 3.105 4.845 0.7808
0.1157 2.655 0.8433 2.840 1.835 0.9467 3.588 3.136 5.010 0.8332
0.1819 2.772 0.9094 2.727 1.935 1.146 3.654 3.096 5.109 0.7523
0.2811 2.692 0.9755 2.650 2.133 1.307 3.786 2.853 5.175 0.5633
0.3472 2.647 1.108 2.602 2.398 1.363 3.919 2.637 5.241 0.5263
0.4134 3.238 1.339 2.640 2.662 1.388 4.018 2.599 5.473 0.5433
0.4795 2.776 1.472 2.652 2.861 1.430 4.150 2.642 5.704 0.6486
0.5126 2.679 1.505 2.616 2.993 1.554 4.282 2.749 6.002 0.9079
0.5456 2.726 1.571 1.958 3.059 1.696 4.316 2.386 6.068 1.037
0.6118 2.979 1.637 0.5440 3.191 2.247 4.349 1.002 6.134 1.526
0.6449 3.034 1.670 0.5289 3.323 2.754 4.382 0.6685 6.201 2.324
0.7110 3.007 1.703 0.5629 3.456 3.023 4.580 0.7003 6.267 2.590

FIG. 3. The solution of a spherical explosion case with an initial fieldBy = 5/
√
π . The output time is at

t = 3.0. (a) Density; (b) gas pressure; (c) magnetic pressure; (d) kinetic energy.
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FIG. 4. The solution of a spherical explosion case with an initial fieldBy = 50/
√
π . The output time is at

t = 1.05. (a) Density; (b) gas pressure; (c) magnetic pressure; (d) kinetic energy.

3.3. Kelvin–Helmholtz Instability [24]

The Kelvin–Helmholtz instability arises when two superposed fluid flows have a relative
velocity. It can be considered an important mechanism for momentum transfer at the Earth’s
magnetopause boundary, which separates the solar wind from the Earth’s magnetosphere.
Similarly to the calculations in [9], we consider both periodic and convective models, which
are defined in terms of thex-direction boundary conditions.

The initial data of the periodic and convective models are given byρ = 1, ux = (u0/2)
tanh(y/a), Bz = 0, andp = 0.5, wherea denotes the width of the velocity shear layer with
the value of 1,u0 = 2, andγ = 2. Initially, a small perturbation for the velocity field is
imposed,

ũx =
{−ũ0 sin(2πx/λ)/(1+ y2), if x ∈ [− λ

2,
λ
2

]
,

0, otherwise,

whereũ0 = 0.008 andλ = 5π in the above perturbation. The computational domain used is
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FIG. 5. The Orszag–Tang MHD turbulence problem with a uniform mesh of 192× 192 grid points. The
output time ist = 0.5: There are 20 contours for density, pressure, magnetic pressure, and kinetic energy.
(a) Density; (b) gas pressure; (c) magnetic pressure; (d) kinetic energy.

[−L/2, L/2]× [−H, H ], whereL = λandH = 10 for the periodic case, andL = 11λand
H = 20 for the convective case. In both cases, the outflow boundary conditions are applied
at the top and bottom boundaries. In thex-direction, the periodic boundary condition is used
for the periodic model and the outflow boundary condition is used for the convective case.
With the consideration of initial velocity distribution, Jiang and Wu used an adaptive mesh
in their calculations, where the smallest cell size used is1y = 0.1275 for the convective
model, and1y = 0.103448 and 0.0507786 for the two periodic cases. In our calculations,
a uniform mesh with1y = 0.1 is used in all cases. The use of a fine mesh to resolve
the initial velocity field is necessary in the current example. Otherwise, if a large cell
size aroundy = 0 is used, the initial velocity distribution will be erroneously represented.
Figures 13–15 show contours of the density and pressure obtained by the current method
at different output times for the periodic and convective cases. Figure 16 presents the time
evolution of the total transverse kinetic energy1

2

∫
ρu2

y dx dyfor the periodic and convective
systems. Our numerical results are very close to those obtained using fifth-order WENO
methods [9].
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FIG. 6. The Orszag–Tang MHD turbulence problem at output timet = 2. (a) Density; (b) gas pressure;
(c) magnetic pressure; (d) kinetic energy.

To further demonstrate the accuracy of the kinetic scheme, we have calculated the Kelvin–
Helmholtz instability with different mesh sizes. Table II shows a comparison between the
kinetic schemes withη = 0.7 andη = 1.0 for the above periodic model with a uniform grid
in bothx- andy-directions over the computational domain [− 5π

2 ,
5π
2 ] × [−10, 10]. For each

run, we list the maximum transverse kinetic energy attained and the time when it occurs.
In comparison with the results presented in Table V of [9], the kinetic scheme could give

TABLE II

The Maximum Total Transverse Kinetic Energy Ek of the Periodic

Kelvin–Helmholtz Instability Case on a Mesh Refinement Study

BGK scheme (η = 0.7) KFVS scheme (η = 1.)

Grid Ek Time Ek Time

50× 100 3.1288 88.2061 2.3648 93.3091
100× 200 3.8040 78.7819 3.7261 79.8388
200× 400 3.8275 77.4621 3.8292 77.5723
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FIG. 7. The Orszag–Tang MHD turbulence problem at output timet = 3. (a) Density; (b) gas pressure;
(c) magnetic pressure; (d) kinetic energy.

a higher converged transverse kinetic energyEk, i.e., Ek = 3.827 instead ofEk = 3.703
of fifth-order ENO method [9], and our results are much better than those obtained from
other second-order methods [9]. Also, the difference in numerical dissipation between the
schemes with collisionalη = 0.7 and free transportη = 1.0 models can be clearly observed,
especially in the coarse mesh case with 50× 100 grid points. Fortunately, for both kinetic
models the numerical results converge with the mesh refinements.

4. DISCUSSION AND CONCLUSION

In this paper we have extended the gas-kinetic theory based flux splitting method [26] to
the multidimensional MHD calculations. The numerical flux function is constructed with
the consideration of particle transport across the cell interfaces and particle “collisions” are
implemented in the transport process to reduce the numerical dissipation. The parameterη,
which determines the weights between the free transport and equilibrium fluxes in Eq. (2.8),
takes a constant value in the current study. Although we have restricted our attention to the
two-dimensional case in the current paper, the extension of the current method to three
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FIG. 8. The Orszag–Tang MHD turbulence problem at output timet = 8. (a) Density; (b) gas pressure;
(c) magnetic pressure; (d) kinetic energy.

dimensions using the directional splitting method is straightforward. Second-order spatial
resolution has been obtained in the current gas-kinetic approach with the implementation
of a MUSCL-type interpolation technique, and the temporal resolution is improved by the
use of the Runge–Kutta time-stepping method. The current scheme has been successfully
applied to the spherical explosion, Kelvin–Helmholtz instability, and Orszag–Tang MHD
turbulence test cases. In the near future, we are going to apply the 3D kinetic method to the
study of the interaction of the solar wind with a magnetized planet [13]. Finally, we give
several remarks about the current MHD solver.

(1) The initial reconstruction can be applied to the conservative or primitive variables.
Due to the different amounts of dissipation introduced in the above approaches, the results
of the MHD system depend more sensitively on the limiters and the variables used than the
results of the Euler equations, especially in the cases with strong magnetic field.

(2) Similarly to any other MHD solvers, to obtain accurate and stable solutions we have
used a correction method to enforce the divergence-free condition∇ · B = 0. It is possible
to specifically design an update procedure for the magnetic field to satisfy the divergence-
free condition automatically. However, with the consideration of the errors involved in the



FIG. 9. The pressure distribution along the liney = 0.625π for the Orszag–Tang MHD turbulence problem
at output timet = 3, where the+ represents the result with 192× 192 grid points calculation, and the solid line
is obtained with a fine mesh of 384× 384 grid points. The data from 192× 192 grid points calculation are listed
in Table I for future references.

FIG. 10. The time evolution of global kinetic energy for the Orszag–Tang MHD turbulence problem. The
calculation has been done up to timet = 100.0 with 192× 192 grid points.

83



84 TANG AND XU

FIG. 11. The time evolution of global magnetic energy for the Orszag–Tang MHD turbulence problem.

FIG. 12. The time evolution of global thermal energy for the Orszag–Tang MHD turbulence problem.



GAS-KINETIC METHOD FOR MHD 85

FIG. 13. The Kelvin–Helmholtz instability in the periodic case. The output time ist = 144. A uniform mesh
with 200× 200 grid points is used and 20 contours are plotted. (a) Density; (b) pressure.

FIG. 14. The Kelvin–Helmholtz instability in the convective case at output timet = 120. A uniform mesh with
528× 400 grid points is used and 20 contours are plotted. The current calculation is on the whole computational
domain of [−L/2, L/2]× [−H, H ] instead of the half domain [−L/2, L/2]× [0, H ] used in Jiang and Wu’s
paper [9]. (a) Density; (b) pressure.
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FIG. 15. The Kelvin–Helmholtz instability in the convective case at output timet = 145. (a) Density;
(b) pressure.

FIG. 16. The time evolution of the total transverse kinetic energy log( 1
2

∫
ρu2

y dx dy) for the Kelvin–
Helmholtz instability case. The solid and dashed curves represent the results of the convective and periodic
cases, respectively.
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process of reconstruction, directional splitting, and the flux approximation, the assessment
of the real improvement in the numerical solutions from the automatical satisfaction of
divergence-free condition will be difficult. But it is still interesting to develop such a MHD
solver.

(3) Because the kinetic method avoids the complicated wave decomposition procedure
implemented in most approximate Riemann solvers, the kinetic method is very efficient in
comparison with other MHD solvers. As shown in this paper, the accuracy of the kinetic
scheme is comparable to that of other high-resolution methods. Also, no entropy fix is
needed to obtain a physically realizable solution in the gas-kinetic approach. At the end,
it should be emphasized that the current method has only second-order accuracy. How to
extend the kinetic scheme to a higher order one, which is required in turbulence simulation,
is still an open question.
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